Polarizing Beam Splitter-manufacture,factory,supplier from China

(Total 24 Products for Polarizing Beam Splitter)
Polarizing Beamsplitters (PBS) splits incident unpolarized light into two perpendicular linearly polarized light. Among them, p-polarized light passes through completely, while s-polarized light is reflected at 45 deg which makes the emitting direction of s-light vertical to p-light. Additionally, beamsplitters can be used in reverse to combine two different beams into a single one. Beamsplitters are often classified according to their construction:cube or plate.Cube PBS are fabricated using two typically right angle prisms.
Contact Now
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contact Now
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contact Now
Thin film polarizers are based on interference within a dielectric optical thin-film coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say to change un-polarized beam into linear polarized beam.
Contact Now
Phase retardation plates, or waveplates, are polarizing optics used to manipulate the polarization state of the transmitting light without attenuating, deviating, or displacing the light. The working principle of the plate is to utilize the birefringence of certain materials which separates the incident light beam into two beams along two orthogonal optical axes within the medium. The phase retardation between the two beams of the incident light contributes to changes in the polarization state.
Contact Now
Polarizer is a kind of optical filter where the light transmission depends strongly on the polarization state. Normally, light with linear polarization in a certain direction is passed, and light polarized in an orthogonal direction is either absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ dependence. That can be understood by considering that linear polarization state as a linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contact Now
Lithium Niobate (LiNbO3) is widely used  in fiber communication devices as birefringent crystal and used as electro-optic modulator and Q-switch for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing optics. The transverse modulation is mostly employed for LiNbO3 crystal.
Contact Now
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Contact Now
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent compositions) is one of the possible solutions to deal with this problem. MgO doping has played an important role in LN and shown an increased threshold laser beam strength by 100 times. An interesting point is that every physical property of MgO:LN (e.g.
Contact Now
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contact Now
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Contact Now
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are particularly well suited for high laser powers and UV wavelengths.
Contact Now
Polarizing Beamsplitters (PBS) are designed to split light by polarization state rather than by wavelength or intensity. PBS are often used in semiconductor or photonics instrumentation to transmit p-polarized light while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a range of configurations including plate, cube, or lateral displacement.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact Now
Nd: YLF (Nd:LiYF4) is a laser material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Contact Now
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Contact Now
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact Now
Cr:YAG  or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  is an excellent  and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Relate News
2. Theoretical analysis2.2 Design of CPPLN crystal structureIn order to achieve better temperature robustness and higher frequency doubling efficiency on the same CPPLN crystal, we designed the crystal structure of CPPLN. The schematic diagram of CPPLN for frequency doubling from 1064nm to 532nm is shown in Figure 1. The incident beam with fundamental frequency is set to be e-light, that is, its polarization direction is horizontal. At the same time, the output beam is also set to be e-light.
4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOAs a relatively new nonlinear optical material, CPPLN has a high nonlinear coefficient and a large gain bandwidth. In the foreseeable future, it will have more applications in the fields of industry and medicine. With the increasing demand for polarized crystal materials such as PPLN and CPPLN, the electric field polarization technology of crystals will also have further breakthroughs, and the processing accuracy of polarized crystals will continue to improve.
1. 3 2 ~ 3 μm laser crystals doped with Cr2+ The mid-infrared luminescence of transition metal ions (Ni2+, Co2+, Cr2+, Fe2+, etc.) is based on 3d→3d transitions. According to the different types of sites occupied by transition metal ions in the host material, they can be divided into two categories: occupying octahedral sites with inversion symmetry (such as: Ni2+, Co2+ doped halides); Symmetric tetrahedral sites (such as: Ni2+, Co2+, Cr2+, Fe2+ doped II-VI compounds).
1. ~ 2 μm laser crystals doped with Tm3+ or Ho3+Tm3+ has a strong absorption near ~790 nm and a large absorption cross-section, so the ~790 nm commercial LD can be directly used as a pump source.
1.5  ~ 4 μm laser crystals doped with Fe2+ Compared with Cr:ZnSe, Fe:ZnSe has a smaller band gap and is prone to produce thermally induced multi-phonon quenching, so both laser power and efficiency are low. In 1999, Adams et al. realized the tunable wavelength of 3.98-4.54 μm at low temperature for the first time in Fe:ZnSe, and obtained laser output with slope efficiency of 8.2%. Pumped by Er3+ doped or Cr:ZnSe @ 2.7 μm laser, 4.0 μm wavelength and 1 W level continuous laser output have been obtained at room temperature. In 2020, Pushkin et al.
1. 2   ~ 2.3 μm laser crystals doped with Tm3+ Compared with the 2 μm band (3F4 → 3H6) of Tm3+, the 2.3 μm laser operation based on the 3H4 → 3H5 transition of the Tm3+ doped laser medium has the following advantages: (1) ~790 nm LD is directly pumped to the upper energy level of the laser. Tm3+ has a strong absorption around 790 nm (directly corresponding to the 3H4 → 3H6 transition), which can match the emission wavelength of the current mature commercial AlGaAs LD, so as to realize high-performance LD pumping all-solid-state high-efficiency 2.3 μm laser operation.
1. 4  ~ 3 μm laser crystals doped with Er2+, U4+, Ho3+, Dy3+  As an active ion, Ho3+ has achieved laser output in the ~3 μm band (5I6→5I7). In 1976, researchers first realized 2.9 μm laser output in Ho:YAP crystal. In 1990, Bowman et al. obtained 2.85 μm and 2.92 μm laser outputs in Ho:YAP crystals, and obtained 2.92 μm band-tuned laser outputs in Ho:YAP crystals in the following year. In 2017, Nie et al. pumped Ho, Pr: LiLuF4 crystals with a 1 150 nm Raman fiber laser, achieving 2.95 μm watt-level laser output for the first time. In 2018, Zhang et al.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
x

Submitted successfully

We will contact you as soon as possible

Close