Neodymium-doped Yttrium Lithium Fluoride-manufacture,factory,supplier from China

(Total 24 Products for Neodymium-doped Yttrium Lithium Fluoride)
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared.  When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Contact Now
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is one of the best commercially available material for diode-pumped solid-state lasers, especially for lasers with low or middle power density. For example, Nd:YVO4 is a better choice than Nd:YAG for generating low-power beams in hand-held pointers or other compact lasers. In these applications, Nd:YOV4 has some advantages over Nd:YAG, e.g.
Contact Now
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is the most efficient laser crystal for diode-pumped solid-state lasers. Its good physical, optical and mechanical properties make Nd:YVO4 an excellent crystal for high power, stable and cost-effective diode-pumped solid-state lasers, especially for lasers with low or middle power density. Nd:YVO4  is a good choice for highly polarized output at 1342 nm, as the emission line is much stronger than those of its alternatives.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine various output wavelength with the superior thermal and optical properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is 2940nm, which is at the position of water absorption peak and can be strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in plastic surgery and dentistry.
Contact Now
One of the most important drawbacks of popular LiNbO3 crystal is its susceptibility to photorefractive damage (optically induced change of refractive index, usually under exposure with blue or green CW light). The usual way to eliminate this effect is to keep LN crystals at elevated temperatures (400K or more). Another way to prevent photorefractive damage is MgO-doping (usually at levels of around 5 mol% for congruent LN).
Contact Now
Lithium  Niobate (LN) crystal has excellent electro-optic, acousto-optic,  piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
Nd:YVO4 is the most efficient laser crystal for diode-pumped solid-state lasers. The good physical, optical and mechanical properties make Nd:YVO4 an excellent material for high power, stable and cost-effective diode-pumped solid-state lasers.
Contact Now
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Contact Now
Nominally pure stoichiometric LiNbO3 shows lower photorefractive damage resistance than congruent crystal; however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
Lithium Niobate (LiNbO3) is widely used  in fiber communication devices as birefringent crystal and used as electro-optic modulator and Q-switch for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing optics. The transverse modulation is mostly employed for LiNbO3 crystal.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
Cr:YAG  or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  is an excellent  and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact Now
Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Contact Now
Diffusion Bonding Crystal consists of two, three or more parts with different types. They are often used to decrease thermal lens effect, that is conducive to the stability of lasers and high-power laser operation.The Crystals being bonded could be a laser crystal doped with laser-active ions, and its counterparts without dopants (e.g. YAG + Nd :YAG).
Contact Now
KTP (KTiOPO4) is one of the most commonly used nonlinear optical materials. For example, it’s regularly used for frequency doubling of Nd:YAG lasers and other Nd-doped lasers, particularly at low or medium-power density. KTP is also widely used as OPO, EOM, optical wave-guide material, and in directional couplers.KTP exhibits a high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Relate News
3 The main application of lithium tantalate crystal3.1 SAW Wave filterThere are many studies on filters in SAW devices. Wave filters have the advantages of low transmission loss, high reliability, great manufacturing flexibility, analog/digital compatibility, excellent frequency selection characteristics, and can realize a variety of complex functions.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterYang Qing-rui and others designed a resonator SAW filter using LiTaO3/SiO2/Si substrate. Figures 3 and 4 are optical photos of the device and partial scanning electron microscopy pictures of the device respectively. The interdigitated electrodes of the device in the picture are clear and no adhesion is seen.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
1. 3 2 ~ 3 μm laser crystals doped with Cr2+ The mid-infrared luminescence of transition metal ions (Ni2+, Co2+, Cr2+, Fe2+, etc.) is based on 3d→3d transitions. According to the different types of sites occupied by transition metal ions in the host material, they can be divided into two categories: occupying octahedral sites with inversion symmetry (such as: Ni2+, Co2+ doped halides); Symmetric tetrahedral sites (such as: Ni2+, Co2+, Cr2+, Fe2+ doped II-VI compounds).
1.3 Doping of Lithium Tantalate CrystalDifferent fields have different requirements for the properties of lithium tantalate crystals. When being used to prepare high-density and large-capacity holographic information storage devices, LiTaO3 crystals need to have excellent photorefractive properties. Due to the particularity of the crystal structure of LiTaO3, its physical properties can be adjusted through doping, for example, the widely used photorefractive doping.
2. Fabrication of Lithium Tantalate Crystal2.1 Fabrication of same composition lithium tantalate crystalThe same composition Lithium tantalate (CLT) crystals are often fabricated by mixing high-purity tantalum pentoxide with high-purity lithium carbonate at a stoichiometric ratio of 0.95:1 (molar ratio), and are prepared by the crucible pulling method. The quality of LiTaO3 crystal (www.wisoptic.com) is generally affected by factors such as raw material ratio, pulling speed, seed crystal quality, crucible shape and type.
Conclusion Lithium tantalate material has a large pyroelectric coefficient, high Curie temperature, small dielectric loss factor, low heat melt per unit volume, small relative dielectric constant, and stable performance. It is a good ferroelectric and piezoelectric material. It also has extraordinary properties. Because of its linear optical properties, lithium tantalate (LT crystal, www.wisoptic.com) has gradually become a popular material used in communications, electronics and other fields.
1.2 Near-stoichiometric Lithium Tantalate Crystal Most of the lithium tantalate crystals currently used are grown from melts with the same composition ratio, which is generally called the same composition lithium tantalate (CLT). However, large number of defects affect the physical properties of the CLT crystal, so researchers have conducted study on near-stoichiometric lithium tantalate (NSLT) with less material defects and better physical properties.
1. ~ 2 μm laser crystals doped with Tm3+ or Ho3+Tm3+ has a strong absorption near ~790 nm and a large absorption cross-section, so the ~790 nm commercial LD can be directly used as a pump source.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterPeng et al. used ion etching to process lithium tantalate (LT) crystals to obtain a high fundamental frequency crystal resonator. They used this crystal resonator to design a high-frequency broadband filter, which improved the operating frequency and reliability of the filter and increased the number of The bandwidth of the filter ensures the high temperature stability and low insertion loss of the filter.
x

Submitted successfully

We will contact you as soon as possible

Close