Nd YAG-manufacture,factory,supplier from China

(Total 24 Products for Nd YAG)
Main SpecificationsDimensionsAperture2×2 ~ 14×14 mm2Length0.1 - 12 mmOrientation[100] or [111] (±1°)Doping Concentration0.5 ~ 3.0 mol%Initial Absorption Coefficient0.5 ~ 6.0 cm-1 @ 1064 nmInitial Transmission5% ~ 95% Surface Flatness< λ/8 @ 633 nmEnd Surface Parallelism< 30”Chamfer≤ 0.1 mm × 45°Surface Quality20-10 [s-d] (MIL-PRF-13830B)CoatingAR (R<0.2% @1064nm) or according to customer’s requestLIDT≥ 500 MW/cm2The pulse width of Cr4+:YAG passively Q-switched lasers could be as short as 5 ns for diode pumped Nd:YAG lasers and the repetition could be as high a
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Contact Now
Diffusion Bonding Crystal consists of two, three or more parts with different types. They are often used to decrease thermal lens effect, that is conducive to the stability of lasers and high-power laser operation.The Crystals being bonded could be a laser crystal doped with laser-active ions, and its counterparts without dopants (e.g. YAG + Nd :YAG).
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Contact Now
Nd: YLF (Nd:LiYF4) is a laser material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Contact Now
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is one of the best commercially available material for diode-pumped solid-state lasers, especially for lasers with low or middle power density. For example, Nd:YVO4 is a better choice than Nd:YAG for generating low-power beams in hand-held pointers or other compact lasers. In these applications, Nd:YOV4 has some advantages over Nd:YAG, e.g.
Contact Now
Cr:YAG  or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  is an excellent  and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact Now
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Contact Now
Alumina Ceramic Reflectors are designed primarily for use in pumping chambers for many diverse laser systems, e.g. YAG lasers.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output.
Contact Now
Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Contact Now
Tm3+:YLF crystal has a high absorption peak around 792 nm which locates in the diode pumping range, and also has a cross-relaxation process that provides the possibility for each absorbed pump photon to produce to ions at higher laser energy level. Tm3+: YLF laser is very suitable as a pump source for Ho3+:YAG laser. This is due to the good overlap of the emission band of Tm3+:YLF and the absorption band of Ho3+:YAG, and the ability to produce a linearly polarized output.
Contact Now
Yb:YAG's advantage is a wide pump band and an excellent emission cross section. It is ideal for diode pumping. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output. High efficiency means a relatively small dimension Yb:YAG laser crystal will produce high power output. Based on the YAG host crystal, Yb:YAG can be quickly integrated into the laser design process.
Contact Now
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
KTP Crystal Features• Large Nonlinear Optical (NLO) Coefficients• Wide Phase-matching Acceptance Angle• Broad Temperature and Spectral Bandwidth• High Electro-Optic (E-O) Coefficients • Nonhygroscopic, Good Chemical and Mechanical Properties • Relatively High Damage Threshold for E-O modulatorKTP Crystal Applications1. SHG of Nd:Laser - KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine various output wavelength with the superior thermal and optical properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is 2940nm, which is at the position of water absorption peak and can be strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in plastic surgery and dentistry.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contact Now
Nd:YVO4 is the most efficient laser crystal for diode-pumped solid-state lasers. The good physical, optical and mechanical properties make Nd:YVO4 an excellent material for high power, stable and cost-effective diode-pumped solid-state lasers.
Contact Now
KTP (KTiOPO4) is one of the most commonly used nonlinear optical materials. For example, it’s regularly used for frequency doubling of Nd:YAG lasers and other Nd-doped lasers, particularly at low or medium-power density. KTP is also widely used as OPO, EOM, optical wave-guide material, and in directional couplers.KTP exhibits a high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact Now
Relate News
Conclusion Lithium tantalate material has a large pyroelectric coefficient, high Curie temperature, small dielectric loss factor, low heat melt per unit volume, small relative dielectric constant, and stable performance. It is a good ferroelectric and piezoelectric material. It also has extraordinary properties. Because of its linear optical properties, lithium tantalate (LT crystal, www.wisoptic.com) has gradually become a popular material used in communications, electronics and other fields.
3. Experimental EquipmentThe overall device diagram of the frequency doubling experiment is shown in Figure 3(a). The 1064nm continuous light passes through a half-wave plate and is directly focused into the CPPLN crystal by a lens. The generated frequency doubling light passes through a 532nm transparent filter and is received and detected by a power meter. The self-built LD-pumped Nd:YVO4 continuous laser used in the experiment can reach a maximum output power of 22.53W.
1. 4  ~ 3 μm laser crystals doped with Er2+, U4+, Ho3+, Dy3+  As an active ion, Ho3+ has achieved laser output in the ~3 μm band (5I6→5I7). In 1976, researchers first realized 2.9 μm laser output in Ho:YAP crystal. In 1990, Bowman et al. obtained 2.85 μm and 2.92 μm laser outputs in Ho:YAP crystals, and obtained 2.92 μm band-tuned laser outputs in Ho:YAP crystals in the following year. In 2017, Nie et al. pumped Ho, Pr: LiLuF4 crystals with a 1 150 nm Raman fiber laser, achieving 2.95 μm watt-level laser output for the first time. In 2018, Zhang et al.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterThere are many studies on filters in SAW devices. Wave filters have the advantages of low transmission loss, high reliability, great manufacturing flexibility, analog/digital compatibility, excellent frequency selection characteristics, and can realize a variety of complex functions.
03 Experimental results and analysisWhen the green light input power is lower than 4 W, the matching temperature of the BBO crystal has little effect on the output power of the quadrupled 266 nm laser, and when the optimal power of ultraviolet light output is achieved, the temperature offset ΔT of the heating device also tends to be consistent; when the green light input power is greater than 8 W, the higher the matching temperature of the BBO crystal (www.wisoptic.com), the smaller the temperature offset ΔT of the heating device, and the higher the output power of the 266 nm la
1.2 Near-stoichiometric Lithium Tantalate Crystal Most of the lithium tantalate crystals currently used are grown from melts with the same composition ratio, which is generally called the same composition lithium tantalate (CLT). However, large number of defects affect the physical properties of the CLT crystal, so researchers have conducted study on near-stoichiometric lithium tantalate (NSLT) with less material defects and better physical properties.
2.2 Fabrication of lithium tantalate crystal with near stoichiometric ratioThe preparation of near-stoichiometric lithium tantalate (NSLT) crystals is difficult. The current methods mainly include: the double crucible method, the flux pulling method, the float zone method and the gas phase exchange equilibrium method. 2.2.1 The double crucible methodIn the double crucible method, the melt material needs to be continuously added to the crucible during the crystal preparation process to keep the melt composition unchanged.
1. Research status and future development trend of mid-infrared (2-5 μm) laser crystalsAccording to the order of laser wavelength from short to long, the main material that have achieved laser output (including some optical fibers and transparent ceramics for comparison) are listed in Table 1. Among them, the highest continuous laser output power of laser crystals corresponding to different wave bands is shown in Figure 2. The laser output power of activated ions shows an obvious attenuation trend as the wavelength expands to the mid-infrared direction.
IntroductionLithium tantalate (LiTaO3, referred to as LT), as an excellent multifunctional crystal material, has good piezoelectric, electro-optical and pyroelectric properties, and is ideal for making surface acoustic wave (SAW) filters, resonators, tuners, Q switches and pyroelectric detectors. Devices made from LT crystal (www.wisoptic.com) are widely used in the automotive electronics, 5G communications and infrared detectors, and have broad market prospects.In 1965, Ballman used the pulling method to grow LT single crystal for the first time.
x

Submitted successfully

We will contact you as soon as possible

Close