LiNbO3 Compared with LiNbO3-manufacture,factory,supplier from China

(Total 24 Products for LiNbO3 Compared with LiNbO3)
One of the most important drawbacks of popular LiNbO3 crystal is its susceptibility to photorefractive damage (optically induced change of refractive index, usually under exposure with blue or green CW light). The usual way to eliminate this effect is to keep LN crystals at elevated temperatures (400K or more). Another way to prevent photorefractive damage is MgO-doping (usually at levels of around 5 mol% for congruent LN).
Contact Now
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact Now
Nominally pure stoichiometric LiNbO3 shows lower photorefractive damage resistance than congruent crystal; however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
LiNbO3 crystal is a low cost photoelectric material with good mechanical and physical properties as well as high optical homogeneity. It has been widely used as frequency doublers for wavelength > 1mm and optical parametric oscillators (OPOs) pumped at 1064nm as well as quasi-phase-matched (QPM) devices. With preferable E-O coefficients, LiNbO3 crystal has become the most commonly used material for Q-switches and phase modulators, waveguide substrate, and surface acoustic wave (SAW) wafers, etc.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent compositions) is one of the possible solutions to deal with this problem. MgO doping has played an important role in LN and shown an increased threshold laser beam strength by 100 times. An interesting point is that every physical property of MgO:LN (e.g.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LN Crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.As one of the most thoroughly characterized nonlinear optical materials, LiNbO3 is suitable for a variety of frequency conversion applications. For example, it is widely used as frequency doublers for wavelength >1 μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices.
Contact Now
Lithium Niobate (LiNbO3) is widely used  in fiber communication devices as birefringent crystal and used as electro-optic modulator and Q-switch for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing optics. The transverse modulation is mostly employed for LiNbO3 crystal.
Contact Now
The high damage threshold makes BBO cells more attractive than others in the high power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in transverse mode, which makes the cells very compact, and the half-wave voltage designable. BBO Pockels cells are also suitable for systems with high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
Compared to more commonly used KTP crystal, KTA crystal has larger non-linear optical and electro-optical coefficients. KTA has the added benefit of significantly reduced absorption in the 2 to 5 μm region.  It has found more and more applications in second harmonic generation (SHG), sum and difference frequency generation (SFG)/(DFG), optical parametric oscillation/ amplification (OPO/OPA), and electro-optical Q-switching. WISOPTIC do in-house growing and processing KTA crystal with high optical quality and various options of dimensional and coating specifications.
Contact Now
Lithium  Niobate (LN) crystal has excellent electro-optic, acousto-optic,  piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact Now
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are particularly well suited for high laser powers and UV wavelengths.
Contact Now
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared.  When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Contact Now
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm, which attach to Q-switched Nd:YAG lasers. For these wavelengths to be produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to produce the 532 nm wavelength, which is then converted by the dye handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact Now
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby, Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity and therefore enhanced laser power. Surfaces can be sealed and coated with a solarization-resistant glaze to give high bulk reflectivity.
Contact Now
Tm:YAP crystal is one of the most important crystals for LD pumping 2μm laser. The anisotropic structure of Tm:YAP produces anisotropic emission cross section. Tm:YAP crystals with different orientations have different output wavelengths and operating forms for different functions. Compared with the physical and chemical properties of Tm:YAG, the 795nm pump absorption band of Tm:YAP matches the emission wavelength of commonly used high-power AlGaAs diodes better.
Contact Now
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact Now
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Compared with congruent LN (cLN) crysal, the electro-optic coefficient, nonlinear optical coefficient, periodic polarization reversal voltage and applied photorefractive properties of stoichiometric LN (sLN) crystal are greatly improved. With such excellent physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Contact Now
Potassium dihydrogen phosphate KH2PO4 (KDP) is a transparent dielectric material best known for its nonlinear optical and electro-optical properties. Because of its nonlinear optical properties, it has been incorporated into various laser systems for harmonic generation and optoelectrical switching.
Contact Now
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact Now
Relate News
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
1.5  ~ 4 μm laser crystals doped with Fe2+ Compared with Cr:ZnSe, Fe:ZnSe has a smaller band gap and is prone to produce thermally induced multi-phonon quenching, so both laser power and efficiency are low. In 1999, Adams et al. realized the tunable wavelength of 3.98-4.54 μm at low temperature for the first time in Fe:ZnSe, and obtained laser output with slope efficiency of 8.2%. Pumped by Er3+ doped or Cr:ZnSe @ 2.7 μm laser, 4.0 μm wavelength and 1 W level continuous laser output have been obtained at room temperature. In 2020, Pushkin et al.
MEASUREMENT TECHNIQUEThe measurement technique consists primarily of a measurement of the variation of the angle of deviation with temperature. The crystals to be measured were 60-60-60° prisms approximately 15 mm on a side. They were attached to a temperature-controlled mount in a vacuum chamber. The temperature could be varied by varying the temperature of a liquid bath above the mount. Temperature was measured by thermocouples attached above and below the crystal. The crystal temperature was assumed to be the average of the two temperatures.
1. 2   ~ 2.3 μm laser crystals doped with Tm3+ Compared with the 2 μm band (3F4 → 3H6) of Tm3+, the 2.3 μm laser operation based on the 3H4 → 3H5 transition of the Tm3+ doped laser medium has the following advantages: (1) ~790 nm LD is directly pumped to the upper energy level of the laser. Tm3+ has a strong absorption around 790 nm (directly corresponding to the 3H4 → 3H6 transition), which can match the emission wavelength of the current mature commercial AlGaAs LD, so as to realize high-performance LD pumping all-solid-state high-efficiency 2.3 μm laser operation.
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
3.3 Laser pretreatment of dielectric film with large diameter Laser pretreatment technology is the last process before the supply of large-diameter components with dielectric film in NIF devices in the United States. LLNL provides their laser pretreatment device and specifications to each of their supplier of thin film components.
2.2 Theoretical inversion cognition of precursor characteristics through damage morphologyThe typical damage morphology of multilayer dielectric films with picosecond pulse in the fundamental frequency band is high-density and small-scale. In order to understand the destruction process, we designed a multi-layer dielectric film system with high fundamental frequency and high reflection, and used a 1064 nm 30 ps laser to conduct a destruction experiment. Figure 9 shows a typical damage morphology.
1. 3 2 ~ 3 μm laser crystals doped with Cr2+ The mid-infrared luminescence of transition metal ions (Ni2+, Co2+, Cr2+, Fe2+, etc.) is based on 3d→3d transitions. According to the different types of sites occupied by transition metal ions in the host material, they can be divided into two categories: occupying octahedral sites with inversion symmetry (such as: Ni2+, Co2+ doped halides); Symmetric tetrahedral sites (such as: Ni2+, Co2+, Cr2+, Fe2+ doped II-VI compounds).
1. ~ 2 μm laser crystals doped with Tm3+ or Ho3+Tm3+ has a strong absorption near ~790 nm and a large absorption cross-section, so the ~790 nm commercial LD can be directly used as a pump source.
x

Submitted successfully

We will contact you as soon as possible

Close