LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
One of the most important drawbacks of popular LiNbO3 crystal is its
susceptibility to photorefractive damage (optically induced change of
refractive index, usually under exposure with blue or green CW light).
The usual way to eliminate this effect is to keep LN crystals at
elevated temperatures (400K or more). Another way to prevent
photorefractive damage is MgO-doping (usually at levels of around 5 mol%
for congruent LN).
Contact Now
Lithium Niobate (LN) crystal has excellent electro-optic, acousto-optic, piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
Compared to more commonly used KTP crystal, KTA
crystal has larger non-linear optical and electro-optical
coefficients. KTA has the added benefit of
significantly reduced absorption in the 2 to 5 μm region. It has found
more and more applications in second harmonic generation (SHG), sum and
difference frequency generation (SFG)/(DFG), optical parametric
oscillation/ amplification (OPO/OPA), and electro-optical Q-switching. WISOPTIC do in-house growing and processing KTA crystal with high optical quality and various options of dimensional and coating specifications.
Contact Now
Nominally pure stoichiometric LiNbO3
shows lower photorefractive damage resistance than congruent crystal;
however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
LN Crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.As one of the most thoroughly characterized nonlinear optical materials, LiNbO3 is suitable for a variety of frequency conversion applications. For example, it is widely used as frequency doublers for wavelength >1 μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices.
Contact Now
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely
used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power
Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact Now
Lithium
Niobate (LiNbO3) is widely used in fiber communication devices as birefringent
crystal and used as electro-optic modulator and Q-switch
for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical
polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing
optics. The transverse modulation is mostly employed for
LiNbO3 crystal.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but
has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent
compositions) is one of the possible solutions to deal with this
problem. MgO doping has played an important role in LN and shown an
increased threshold laser beam strength by 100 times. An interesting
point is that every physical property of MgO:LN (e.g.
Contact Now
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical
emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output.
Contact Now
LiNbO3 crystal is a low cost photoelectric material with good mechanical
and physical properties as well as high optical homogeneity. It has
been widely used as frequency doublers for wavelength > 1mm and
optical parametric oscillators (OPOs) pumped at 1064nm as well as
quasi-phase-matched (QPM) devices. With preferable E-O coefficients,
LiNbO3 crystal has become the most commonly used material for Q-switches
and phase modulators, waveguide substrate, and surface acoustic wave
(SAW) wafers, etc.
Contact Now
High temperature phase of α-BBO Crystal (BaB2O4)
is one of the excellent birefringent crystals. It is characterized by
large birefringent coefficient and wide transmission window ranged from
189nm to 3500nm. Due to its high chemical stability and medium hardness,
α-BBO is fabricated easily into many kinds of optical components.The
physical, chemical, thermal and optical properties of α-BBO are similar
to those of β-BBO.
Contact Now
Beta-BBO crystal is an important nonlinear optical crystal
with combination of unique optical properties, such as broad transmission and
phase matching ranges, large nonlinear coefficient, high damage
threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth
harmonic generation of Nd:YAG lasers, and the best NLO material for the
fifth harmonic generation at 213 nm.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact Now
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now