Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate
materials, e.g. UVFS
and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm.
Also we offer uncoated rectangular windows with aperture from 15 x 20 to
50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It
has advantages of higher damage threshold (about 1.8 times that of
KTP), high resistivity, high repetition rate, no hygroscopic or
piezoelectric effect.
Contact Now
Potassium
Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP)
are among the most widely-used commercial NLO materials, characterized
by good UV transmission, high damage threshold, and high birefringence,
though their NLO coefficients are relatively low. They are usually used
for doubling, tripling or quadrupling of a Nd:YAG laser (at constant
temperature).
Contact Now
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. KDP are also excellent
electro-optic (EO) crystals with high EO coefficients, thus popularly
used as EO modulators and Pockels cells for Q-switched
lasers.
Contact Now
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) crystal is an excellent material for passive Q-switching of Nd:YAG and other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
Nominally pure stoichiometric LiNbO3
shows lower photorefractive damage resistance than congruent crystal;
however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but
has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent
compositions) is one of the possible solutions to deal with this
problem. MgO doping has played an important role in LN and shown an
increased threshold laser beam strength by 100 times. An interesting
point is that every physical property of MgO:LN (e.g.
Contact Now
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high
resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It
is possible to use BBO Pockels cells at average power levels of
hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very
low levels of piezo-electric resonances.
Contact Now
The high
damage threshold makes BBO cells more attractive than others in the high
power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in
transverse mode, which makes the cells very compact, and the half-wave
voltage designable. BBO Pockels cells are also suitable for systems with
high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) and KD*P
(Potassium Dideuterium Phosphate) are useful commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. They are also excellent
electro-optic (EO) crystals with high electro-optic coefficients, widely
used as electro-optical modulators and Pockels cells for Q-switched
lasers.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact Now
Gray Track Resistant (GTR) KTP crystals developed by hydrothermal method overcomes the common phenomenon of
electrochromism of the flux-grown KTP, thus has many advantages such as
high electrical resistivity, low insertion loss, low half-wave voltage,
high laser damage threshold, and wide transmission band. So it's very suitable for high power density
applications, where regular flux-grown KTP crystals will suffer from
gray track damage.GTR-KTP crystal has gray track resistance sufficiently greater than
typical flux-grown KTP.
Contact Now
Corner cube prisms are optics which act as corner reflectors.
The basic operation principle is that there are internal reflections on
three mutually orthogonal prism surfaces, producing a direction of a
reflected beam which is nominally parallel to the direction of the
incident beam – with the accuracy limited only by the accuracy of the
surface orientation of the prism.
Precision prisms can offer excellent parallelism of incoming and
reflecting beams.
It is usually specified as an angular deviation, e.g.
Contact Now