High Damage Threshold Windows-manufacture,factory,supplier from China

(Total 24 Products for High Damage Threshold Windows)
Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate materials, e.g.  UVFS and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm. Also we offer uncoated rectangular windows with aperture from 15 x 20 to 50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
The improved hydrothermal-grown KTP crystal overcomes the common electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage threshold, large effective electro-optic coefficients and lower half-wave voltage.  KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect.
Contact Now
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling or quadrupling of a Nd:YAG laser (at constant temperature).
Contact Now
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. KDP are also excellent electro-optic (EO) crystals with high EO coefficients, thus popularly used as EO modulators and Pockels cells for Q-switched lasers.
Contact Now
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal produces linear changes in the birefringence of the crystal (in contrast to the Kerr Effect, which is quadratic with E). Pockels cells are essential components in various optical devices such as Q-switches for lasers, free space electro-optical modulators, free space switches.   WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
Nominally pure stoichiometric LiNbO3 shows lower photorefractive damage resistance than congruent crystal; however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent compositions) is one of the possible solutions to deal with this problem. MgO doping has played an important role in LN and shown an increased threshold laser beam strength by 100 times. An interesting point is that every physical property of MgO:LN (e.g.
Contact Now
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It is possible to use BBO Pockels cells at average power levels of hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very low levels of piezo-electric resonances.
Contact Now
The high damage threshold makes BBO cells more attractive than others in the high power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in transverse mode, which makes the cells very compact, and the half-wave voltage designable. BBO Pockels cells are also suitable for systems with high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact Now
Gray Track Resistant (GTR) KTP crystals developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band. So it's very suitable for high power density applications, where regular flux-grown KTP crystals will suffer from gray track damage.GTR-KTP crystal has gray track resistance sufficiently greater than typical flux-grown KTP.
Contact Now
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Contact Now
Relate News
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
Since defects induce laser damage, and defects are randomly distributed in optical components, the detection and evaluation of laser damage performance of optical components has become another important research content. The standard for laser damage threshold testing was established in the 1990s and has been continuously improved with the development of laser technology and optical materials.
3.2 Laser Pretreatment TechnologyLaser pretreatment is a technology that uses sub-threshold laser energy flow to process components before they are practically used. It can effectively improve the ability of some optical components to resist laser damage. The main function of laser pretreatment is to remove defects or reduce thermodynamic response under laser irradiation.
2.2 Theoretical inversion cognition of precursor characteristics through damage morphologyThe typical damage morphology of multilayer dielectric films with picosecond pulse in the fundamental frequency band is high-density and small-scale. In order to understand the destruction process, we designed a multi-layer dielectric film system with high fundamental frequency and high reflection, and used a 1064 nm 30 ps laser to conduct a destruction experiment. Figure 9 shows a typical damage morphology.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
Laser damage induced by microscopic defects in optical componentsNodule defect is a typical representative of microscopic defects, and it is one of the main discoveries in the study of laser damage to thin films in the 1990s. At present, a lot of research has been done on the electric field enhancement and damage characteristics of nodule defects and artificially implanted nodule defects. The damage mechanism of nodular defects has been deeply understood.The nodule defect is the main cause of damage to the fundamental frequency dielectric membrane element.
Based on the basic principles of laser damage, researchers have found a breaking through point to solve the problem of laser damage to optical components. But it is very difficult to effectively suppress the source of laser damage in the manufacturing process. Given the variety and complexity of the manufacturing process of optical components, it is necessary to establish the link between the defect formation and the manufacturing process.
3 Functional laser damage evaluation and laser pretreatment technologyWhether it is microscopic defects or nanoscopic laser damage precursors, the distribution and amount in optical materials or components are closely related to the manufacturing process. Low-defect processing and manufacturing technologies have played an important role in promoting the manufacture of high-power laser materials and components. However, as the largest laser project, the ICF laser driver has the largest number and size of optical components so far.
Laser damage induced by microscopic defects in optical componentsAccording to the above numerical analysis results, it can be seen that cracks may be generated around the nodule seed and propagate along the radial direction.
Nanoscale laser damage precursorsDifferent from microscopic defects, defects are called precursors here. Defects generally refer to observable microstructures that are different from the characteristics of the surrounding matrix materials, and are often observed by optical microscopy. The precursors mentioned in this article generally cannot be directly observed by optical methods, and there is no obvious difference in characteristics from the surrounding matrix materials.
x

Submitted successfully

We will contact you as soon as possible

Close