Er:YAG-manufacture,factory,supplier from China

(Total 24 Products for Er:YAG)
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine various output wavelength with the superior thermal and optical properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is 2940nm, which is at the position of water absorption peak and can be strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in plastic surgery and dentistry.
Contact Now
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact Now
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Contact Now
RTP crystal is widely used for Electro-Optic applications whenever low switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple types of laser such as Er:YAG laser at 2.94µm with fairly good efficiency.
Contact Now
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Contact Now
Waveplates (retardation plates or phase shifters) are made from optical materials  with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine.
Contact Now
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contact Now
Optical lenses can be made in many shapes and may be comprised of a single element or form constituent parts of a multi-element compound lens system. They are used to focus light and images, produce magnification, correct optical aberrations and for projection, mainly controlling the focus or divergence light used in instrumentation, microscopy and laser applications.
Contact Now
Thin film polarizers are based on interference within a dielectric optical thin-film coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say to change un-polarized beam into linear polarized beam.
Contact Now
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and gamma. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-BBO differs from α-BBO by the positions of the barium ions within the crystal. Both phases are birefringent, however α-BBO has centric symmetry and thus does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
Polarizer is a kind of optical filter where the light transmission depends strongly on the polarization state. Normally, light with linear polarization in a certain direction is passed, and light polarized in an orthogonal direction is either absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ dependence. That can be understood by considering that linear polarization state as a linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contact Now
Polarizing Beamsplitters (PBS) splits incident unpolarized light into two perpendicular linearly polarized light. Among them, p-polarized light passes through completely, while s-polarized light is reflected at 45 deg which makes the emitting direction of s-light vertical to p-light. Additionally, beamsplitters can be used in reverse to combine two different beams into a single one. Beamsplitters are often classified according to their construction:cube or plate.Cube PBS are fabricated using two typically right angle prisms.
Contact Now
WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type  Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact Now
Compared with congruent LN (cLN) crysal, the electro-optic coefficient, nonlinear optical coefficient, periodic polarization reversal voltage and applied photorefractive properties of stoichiometric LN (sLN) crystal are greatly improved. With such excellent physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Right angle prisms are generally used to bend image paths or redirect light at 90°. This produces a left handed image and depending on the orientation of the prism, the image may be inverted or reverted.
Contact Now
Optical Lenses are designed to focus or diverge light and for imaging or alignment in an optical system. Optical Lenses, which may consist of a single or multiple elements, have a variety of applications. Lens forms can be divided into simple lenses (which include plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, cylinder lens, drum lens, spherical lens in different shapes), achromatic lenses compound lens and multiple types.
Contact Now
Optical beamsplitters play a vital role in many laser-based measurement and positioning systems. Although the operation of a typical beamsplitter is conceptually simple, its performance characteristics can dramatically affect the accuracy and repeatability of the overall system. Consequently, understanding the variables that distinguish beamsplitter performance is an important step in comparing and specifying components.
Contact Now
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
WISOPTIC offers both plate and cube PBS for a variety of wavelength ranges and power handling requirements.
Contact Now
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contact Now
Relate News
Nanoscale laser damage precursorsDifferent from microscopic defects, defects are called precursors here. Defects generally refer to observable microstructures that are different from the characteristics of the surrounding matrix materials, and are often observed by optical microscopy. The precursors mentioned in this article generally cannot be directly observed by optical methods, and there is no obvious difference in characteristics from the surrounding matrix materials.
4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOAs a relatively new nonlinear optical material, CPPLN has a high nonlinear coefficient and a large gain bandwidth. In the foreseeable future, it will have more applications in the fields of industry and medicine. With the increasing demand for polarized crystal materials such as PPLN and CPPLN, the electric field polarization technology of crystals will also have further breakthroughs, and the processing accuracy of polarized crystals will continue to improve.
1.5  ~ 4 μm laser crystals doped with Fe2+ Compared with Cr:ZnSe, Fe:ZnSe has a smaller band gap and is prone to produce thermally induced multi-phonon quenching, so both laser power and efficiency are low. In 1999, Adams et al. realized the tunable wavelength of 3.98-4.54 μm at low temperature for the first time in Fe:ZnSe, and obtained laser output with slope efficiency of 8.2%. Pumped by Er3+ doped or Cr:ZnSe @ 2.7 μm laser, 4.0 μm wavelength and 1 W level continuous laser output have been obtained at room temperature. In 2020, Pushkin et al.
1. 4  ~ 3 μm laser crystals doped with Er2+, U4+, Ho3+, Dy3+  As an active ion, Ho3+ has achieved laser output in the ~3 μm band (5I6→5I7). In 1976, researchers first realized 2.9 μm laser output in Ho:YAP crystal. In 1990, Bowman et al. obtained 2.85 μm and 2.92 μm laser outputs in Ho:YAP crystals, and obtained 2.92 μm band-tuned laser outputs in Ho:YAP crystals in the following year. In 2017, Nie et al. pumped Ho, Pr: LiLuF4 crystals with a 1 150 nm Raman fiber laser, achieving 2.95 μm watt-level laser output for the first time. In 2018, Zhang et al.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
2.3 Lithium tantalate single crystal filmAfter the 1980s, thin film preparation technology has developed rapidly. Currently, the commonly used preparation technologies of lithium tantalate single crystal (www.wisoptic.com) thin film mainly include chemical vapor deposition, physical vapor deposition, magnetron sputtering and sol-gel method.The chemical vapor deposition method synthesizes a thin film on a substrate through a chemical reaction and accurately controls the chemical composition of the product. It has the characteristics of low stress and good quality.
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
3 Functional laser damage evaluation and laser pretreatment technologyWhether it is microscopic defects or nanoscopic laser damage precursors, the distribution and amount in optical materials or components are closely related to the manufacturing process. Low-defect processing and manufacturing technologies have played an important role in promoting the manufacture of high-power laser materials and components. However, as the largest laser project, the ICF laser driver has the largest number and size of optical components so far.
As the source manufacturer of many kinds of function crystals and the leading producer of DKDP Pockels cell in China, WISOPTIC provides high cost-effective products to its customers worldwide and gains substantial trust from all of its business partners. Every year over 40% of WISOPTIC's products are exported to Europe, UK, North America, Korea, Israel, etc.Normally WISOPTIC takes parts in at least one of the important exhibitions in the industry of photonics and laser, such as Laser World of Photonics (Munich/Shanghai), SPIE Photonics West (San Francisco), KIMES (Seoul), PHOTONIX (To
x

Submitted successfully

We will contact you as soon as possible

Close