Dye Laser Cell-manufacture,factory,supplier from China

(Total 24 Products for Dye Laser Cell)
Dye laser headpiece made from WISOPTIC has very high conversion efficiency: 65%~75% for 532/585nm, 45%~55% for 532/650nm.
Contact Now
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contact Now
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contact Now
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact Now
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm, which attach to Q-switched Nd:YAG lasers. For these wavelengths to be produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to produce the 532 nm wavelength, which is then converted by the dye handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact Now
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contact Now
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact Now
The high damage threshold makes BBO cells more attractive than others in the high power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in transverse mode, which makes the cells very compact, and the half-wave voltage designable. BBO Pockels cells are also suitable for systems with high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby, Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity and therefore enhanced laser power. Surfaces can be sealed and coated with a solarization-resistant glaze to give high bulk reflectivity.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Contact Now
A Pockels cell driver is a high-voltage regulated power supply, either pulse or continuous, allowing to control a birefringence of an electro-optical crystal (KTP, KD*P, BBO, etc.) in order to drive the polarization direction of the light propagating through the crystal.WISOPTIC has developed and produces a variety of Pockels cell drivers for different applications: from very simple compact devices for q-switching to precise and powerful fast models for pulse picking, cavity damping, regenerative amplifier control, etc.
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
Basically all Pockels cell drivers are made based on solid-state electronic technology, using high voltage transistors such as MOSFETs. Multiple high voltage transistors may have to be stacked, taking care to achieve an even distribution of voltage across those. Instead of using some heavily isolated floating gate drive circuitry for the different transistors, one may use certain advanced ideas such as implementing so-called avalanche switch stacks involving avalanche diodes and/or avalanche bipolar transistors.Device lifetimes can be very long, provided that properly engineered
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal produces linear changes in the birefringence of the crystal (in contrast to the Kerr Effect, which is quadratic with E). Pockels cells are essential components in various optical devices such as Q-switches for lasers, free space electro-optical modulators, free space switches.   WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling or quadrupling of a Nd:YAG laser (at constant temperature).
Contact Now
Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contact Now
Alumina Ceramic Reflectors are designed primarily for use in pumping chambers for many diverse laser systems, e.g. YAG lasers.
Contact Now
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate materials, e.g.  UVFS and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm. Also we offer uncoated rectangular windows with aperture from 15 x 20 to 50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Relate News
After more than one year’s research work, WISOPTIC has successfully developed two types of dye laser cells – 585nm and 650nm.With advanced technique of coating and optical system design, dye laser headpiece has been developed and will be in mass production soon.Dye laser headpiece 585nm is used mainly to treat facial telangiectasia, and dye laser headpiece 650nm for removal of green tattoo, etc.Dye laser headpiece made from WISOPTIC has higher conversion efficiency than that of any competing product.
As the source manufacturer of many kinds of function crystals and the leading producer of DKDP Pockels cell in China, WISOPTIC provides high cost-effective products to its customers worldwide and gains substantial trust from all of its business partners. Every year over 40% of WISOPTIC's products are exported to Europe, UK, North America, Korea, Israel, etc.Normally WISOPTIC takes parts in at least one of the important exhibitions in the industry of photonics and laser, such as Laser World of Photonics (Munich/Shanghai), SPIE Photonics West (San Francisco), KIMES (Seoul), PHOTONIX (To
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
3.4 Laser pretreatment of DKDP component The laser-damaged precursor of DKDP crystals (provided by WISOPTIC) is in the material body, so it is different from the removal of surface nodule defects in dielectric films. Laser pretreatment cannot remove the precursors in the body, but can only reduce the thermodynamic response of the precursors under laser radiation by improving their absorption intensity. There are still different opinions on this mechanism.
2-5 μm mid-infrared laser crystals have important applications in directional infrared countermeasures, anti-terrorism, biomedicine, environmental monitoring, optical communications, strong field physics, laser fusion, and mid-to-far infrared (nonlinear frequency conversion) basic light sources, etc. With the related development of the pump source technology of semiconductor laser (laser diode, LD), solid-state laser and fiber laser (including resonant pump), mid-infrared crystal has become one of the four main laser crystals developed currently.
3.3 Laser pretreatment of dielectric film with large diameter Laser pretreatment technology is the last process before the supply of large-diameter components with dielectric film in NIF devices in the United States. LLNL provides their laser pretreatment device and specifications to each of their supplier of thin film components.
3.2 Laser Pretreatment TechnologyLaser pretreatment is a technology that uses sub-threshold laser energy flow to process components before they are practically used. It can effectively improve the ability of some optical components to resist laser damage. The main function of laser pretreatment is to remove defects or reduce thermodynamic response under laser irradiation.
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
Since defects induce laser damage, and defects are randomly distributed in optical components, the detection and evaluation of laser damage performance of optical components has become another important research content. The standard for laser damage threshold testing was established in the 1990s and has been continuously improved with the development of laser technology and optical materials.
Conclusion Considering comprehensive factors such as wide absorption bandwidth, large absorption cross section, long upper energy level lifetime (ms to tens of ms) (see Table 2), ion cross relaxation, increased quantum efficiency, and mature LD pump source, Tm3+ in the 2 μm band, Ho3+ and Er3+ in the 3 μm band must be one of the most important and basic laser sources in the mid-infrared band from 2 to 20 μm, and will compete with Nd3+ and Yb3+ in the 1 μm band.
x

Submitted successfully

We will contact you as soon as possible

Close