Dye Handpiece with 585nm on Sale-manufacture,factory,supplier from China

(Total 24 Products for Dye Handpiece with 585nm on Sale)
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm, which attach to Q-switched Nd:YAG lasers. For these wavelengths to be produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to produce the 532 nm wavelength, which is then converted by the dye handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact Now
Dye laser headpiece made from WISOPTIC has very high conversion efficiency: 65%~75% for 532/585nm, 45%~55% for 532/650nm.
Contact Now
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contact Now
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contact Now
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact Now
Right angle prisms are generally used to bend image paths or redirect light at 90°. This produces a left handed image and depending on the orientation of the prism, the image may be inverted or reverted.
Contact Now
Thin film polarizers are based on interference within a dielectric optical thin-film coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say to change un-polarized beam into linear polarized beam.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Contact Now
Polarizer is a kind of optical filter where the light transmission depends strongly on the polarization state. Normally, light with linear polarization in a certain direction is passed, and light polarized in an orthogonal direction is either absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ dependence. That can be understood by considering that linear polarization state as a linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contact Now
One of the most important drawbacks of popular LiNbO3 crystal is its susceptibility to photorefractive damage (optically induced change of refractive index, usually under exposure with blue or green CW light). The usual way to eliminate this effect is to keep LN crystals at elevated temperatures (400K or more). Another way to prevent photorefractive damage is MgO-doping (usually at levels of around 5 mol% for congruent LN).
Contact Now
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Contact Now
Bandpass Filters are used in a variety of industries, including machine vision,factory automation, security and surveillance, license plate recognition, medical and life science, agricultural inspection, aerial imaging, motion analysis, photography and cinematography.WISOPTIC's bandpass filters include mass collection of  dielectric-coated filters, colored glass filters, neutral density filters, spatial filters, and tunable optical filter based on liquid crystal technology. Specifically speaking, e.g.
Contact Now
Front surface mirrors are coated with aluminum or dielectrics for maximum reflection. WISOPTIC provides both kinds of front surface mirrors: metal coated mirror and dielectric coated mirror.Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7).  Dielectric laser mirrors are used for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum.
Contact Now
A right angle prism is an optical prism designed to deviate light by 90° or 180°, depending on the orientation of the prism and the face through which light enters. The joining edges and faces are perpendicular to the base faces, and all joining faces are rectangular. They are often  preferable to plane mirrors, because they are easier to mount and align.
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Compared to more commonly used KTP crystal, KTA crystal has larger non-linear optical and electro-optical coefficients. KTA has the added benefit of significantly reduced absorption in the 2 to 5 μm region.  It has found more and more applications in second harmonic generation (SHG), sum and difference frequency generation (SFG)/(DFG), optical parametric oscillation/ amplification (OPO/OPA), and electro-optical Q-switching. WISOPTIC do in-house growing and processing KTA crystal with high optical quality and various options of dimensional and coating specifications.
Contact Now
There are four main types of prisms based on the function: dispersion prism, deflection or reflection prism, rotating prism and offset prism.  Deflection, offset and rotating prisms are commonly used in imaging applications; diffusion prisms are designed for dispersive light sources and are not suitable for any application that requires high quality images.WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact Now
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Contact Now
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Contact Now
Readily available stock of periodically poled LN (PPLN) crystals can be provided on short lead time, with various specifications of sizes and periods.PPLN SHG crystals are available for pump laser wavelengths 976-2100 nm, generating light 488-1050nm.PPLN OPO crsytals are available for pump sources 515-1064 nm, generating visible and IR CW beams.PPLN DFG crystals are available for various combinations of pump sources, generating wavelengths 2-5.5 um.PPLN SFG crystals are available for various combinations of pump sources, generating wavelengths 500-700 nm.
Contact Now
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contact Now
Potassium dihydrogen phosphate KH2PO4 (KDP) is a transparent dielectric material best known for its nonlinear optical and electro-optical properties. Because of its nonlinear optical properties, it has been incorporated into various laser systems for harmonic generation and optoelectrical switching.
Contact Now
Polarizing Beamsplitters (PBS) are designed to split light by polarization state rather than by wavelength or intensity. PBS are often used in semiconductor or photonics instrumentation to transmit p-polarized light while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a range of configurations including plate, cube, or lateral displacement.
Contact Now
Relate News
After more than one year’s research work, WISOPTIC has successfully developed two types of dye laser cells – 585nm and 650nm.With advanced technique of coating and optical system design, dye laser headpiece has been developed and will be in mass production soon.Dye laser headpiece 585nm is used mainly to treat facial telangiectasia, and dye laser headpiece 650nm for removal of green tattoo, etc.Dye laser headpiece made from WISOPTIC has higher conversion efficiency than that of any competing product.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
MEASUREMENT TECHNIQUEThe measurement technique consists primarily of a measurement of the variation of the angle of deviation with temperature. The crystals to be measured were 60-60-60° prisms approximately 15 mm on a side. They were attached to a temperature-controlled mount in a vacuum chamber. The temperature could be varied by varying the temperature of a liquid bath above the mount. Temperature was measured by thermocouples attached above and below the crystal. The crystal temperature was assumed to be the average of the two temperatures.
2. Theoretical analysis2.1 Temperature robustnessTemperature robustness refers to the stability of the frequency-doubled crystal with respect to temperature. Specifically, when the temperature fluctuates, the power of the frequency-doubled light will not be greatly affected. The influence of temperature on the frequency doubling process mainly comes from the influence on the phase mismatch.
Study on the efficiency and temperature robustness of chirped PPLN crystal in 1064nm frequency doubling experiment - 06  4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOWhen the input 1064nm light is 22.53W, the curves of the frequency-doubled optical power generated by CPPLN (www.wisoptic.com) and LBO (www.wisoptic.com) with temperature are shown in Figure 5(a) and Figure 5(b). The half-maximum full width of the frequency-doubled optical power of CPPLN with respect to temperature is 8.40℃, ranging from 24.19℃ to 32.59℃.
4. Experimental Result and Analysis4.1 Comparison of frequency doubling efficiency of CPPLN and LBOThe CPPLN crystal (www.wisoptic.com) we designed has the maximum frequency doubling efficiency in the working range between 15-40℃, so the subsequent analysis will be carried out around this range. In the same fundamental frequency light power gradient, the effect of temperature change on the frequency doubling efficiency of CPPLN is shown in Figure 4(a).
2. Theoretical analysis2.2 Design of CPPLN crystal structureIn order to achieve better temperature robustness and higher frequency doubling efficiency on the same CPPLN crystal, we designed the crystal structure of CPPLN. The schematic diagram of CPPLN for frequency doubling from 1064nm to 532nm is shown in Figure 1. The incident beam with fundamental frequency is set to be e-light, that is, its polarization direction is horizontal. At the same time, the output beam is also set to be e-light.
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOAs a relatively new nonlinear optical material, CPPLN has a high nonlinear coefficient and a large gain bandwidth. In the foreseeable future, it will have more applications in the fields of industry and medicine. With the increasing demand for polarized crystal materials such as PPLN and CPPLN, the electric field polarization technology of crystals will also have further breakthroughs, and the processing accuracy of polarized crystals will continue to improve.
x

Submitted successfully

We will contact you as soon as possible

Close