Nd:YVO4 is the most efficient laser crystal for diode-pumped solid-state lasers. The good physical, optical and mechanical properties make Nd:YVO4 an excellent material for high power, stable and cost-effective diode-pumped solid-state lasers.
Contact Now
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable
us to offer our customers complete, plug-and-play RTP Pockels cell
assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact Now
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is one of the best commercially available material for diode-pumped solid-state lasers, especially for lasers with low or middle power density. For example, Nd:YVO4 is a better choice than Nd:YAG for generating low-power beams in hand-held pointers or other compact lasers. In these applications, Nd:YOV4 has some advantages over Nd:YAG, e.g.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely favorable for laser operations. Nd:YAG
crystals are used in all types of solid-state lasers
systems-frequency-doubled continuous wave, high-energy Q-switched, and
so on.
Contact Now
YLF is birefringent, which eliminates thermally induced depolarization
loss. The gain and the emission wavelength of Nd:YLF are polarization
dependent: there is the stronger 1047nm ray for π polarization, and a
weaker one at 1053nm for σ polarization. Nd:YLF provides alternative to the more common Nd:YAG laser crystal for near IR
operation.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical
emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output.
Contact Now
KTP (KTiOPO4) is one of the most commonly used nonlinear optical materials. For example, it’s regularly used for frequency doubling of Nd:YAG lasers and other Nd-doped lasers, particularly at low or medium-power density. KTP is also widely used as OPO, EOM, optical wave-guide material, and in directional couplers.KTP exhibits a high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) crystal is an excellent material for passive Q-switching of Nd:YAG and other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
Diffusion
Bonding Crystal consists of two, three or more parts
with different types. They are often used to decrease
thermal lens effect, that is conducive to the stability of lasers and
high-power laser operation.The Crystals being bonded could be a laser crystal doped
with laser-active ions, and its counterparts without dopants (e.g. YAG +
Nd :YAG).
Contact Now
Cr:YAG or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) is an excellent and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact Now
Diffusion Bonded Crystal (DBC) is a crystalline solid used
in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
One of the most important drawbacks of popular LiNbO3 crystal is its
susceptibility to photorefractive damage (optically induced change of
refractive index, usually under exposure with blue or green CW light).
The usual way to eliminate this effect is to keep LN crystals at
elevated temperatures (400K or more). Another way to prevent
photorefractive damage is MgO-doping (usually at levels of around 5 mol%
for congruent LN).
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
KTP Crystal Features• Large Nonlinear Optical (NLO) Coefficients• Wide Phase-matching Acceptance Angle• Broad Temperature and Spectral Bandwidth• High Electro-Optic (E-O) Coefficients
• Nonhygroscopic, Good Chemical and Mechanical Properties
• Relatively High Damage Threshold for E-O modulatorKTP Crystal Applications1. SHG of Nd:Laser - KTP is the most commonly used material for
frequency doubling of Nd:YAG and other Nd-doped lasers, particularly
when the power density is at a low or medium level.
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Compared with congruent LN (cLN) crysal, the electro-optic
coefficient, nonlinear optical coefficient, periodic polarization
reversal voltage and applied photorefractive properties of
stoichiometric LN (sLN) crystal are greatly improved. With such excellent
physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic
material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Contact Now
Right angle prisms
are generally used to bend image paths or redirect light at 90°. This
produces a left handed image and depending on the orientation of the
prism, the image may be inverted or reverted.
Contact Now
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect
but are not parallel to each other. The most important parameters of a
prism are the angle and material. Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light
and for determining the identity and structure of materials that emit or
absorb light. An optical prism’s design determines how light interacts with it.
Contact Now
Optical filters are used to selectively transmit or reject a wavelength or range of wavelengths. Their applications include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Optical filters are widely used in light system of life science, imaging, industrial, or defense industries. For example, Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths. Notch filters reject a portion of the spectrum, while transmitting all other wavelengths.
Contact Now
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate. WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now