WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact Now
An aspherical lens features a non-spherical but rotationally symmetric
shape with a curvature radius that changes at various points between the
center and the edge. Although producing this type of lens is difficult,
when manufactured properly, it offers greater functionality than a
comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of
curvature across the entire lens. In contrast, aspherical lenses have a
more complicated surface with a gradually changing curvature from center
to edge.
Contact Now
The most notable benefit of aspheric lenses is their ability to correct for spherical aberration,
an optical effect which causes incident light rays to focus at
different points when forming an image, creating a blur. Spherical
aberration is commonly seen in spherical lenses, such as plano-convex or
double-convex lens shapes, but aspheric lenses focus light to a small
point, creating comparatively no blur and improving image quality.
Contact Now
Corner cube prisms are optics which act as corner reflectors.
The basic operation principle is that there are internal reflections on
three mutually orthogonal prism surfaces, producing a direction of a
reflected beam which is nominally parallel to the direction of the
incident beam – with the accuracy limited only by the accuracy of the
surface orientation of the prism.
Precision prisms can offer excellent parallelism of incoming and
reflecting beams.
It is usually specified as an angular deviation, e.g.
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate
materials, e.g. UVFS
and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm.
Also we offer uncoated rectangular windows with aperture from 15 x 20 to
50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
Right angle prisms
are generally used to bend image paths or redirect light at 90°. This
produces a left handed image and depending on the orientation of the
prism, the image may be inverted or reverted.
Contact Now
Readily available stock of periodically poled MgO:LN crystals can be provided
on short timescales to rapidly meet your application needs, providing
the capability to efficiently generate laser light in a wide range of
wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump
laser wavelengths from 976 nm to 2100 nm, allowing generation of light
between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing
continuous wavelength generation in a selection of ranges in the visible
and IR.MgO: PPLN DFG Crystals are available for
Contact Now
Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
The periodic polarized KTP (PPKTP) is a novel nonlinear optical material that can be customized to achieve all of the nonlinear applications required in the entire KTP crystal transmission band, without the phase matching limitations of conventional KTP. Moreover, the effective nonlinear coefficient of PPKTP is about 3 times higher than that of conventional KTP. In the nonlinear application of conventional KTP, the crystal must have a single domain structure, but PPKTP crystal has an artificially induced periodic domain structure.
Contact Now
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
Yb:YAG's advantage is a wide pump band and an excellent emission
cross section. It is ideal for diode pumping. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output. High efficiency means a
relatively small dimension Yb:YAG laser crystal will produce high power
output. Based on the YAG host crystal, Yb:YAG can be quickly integrated
into the laser design process.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high
resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It
is possible to use BBO Pockels cells at average power levels of
hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very
low levels of piezo-electric resonances.
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
Nominally pure stoichiometric LiNbO3
shows lower photorefractive damage resistance than congruent crystal;
however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact Now
Polarizing Beamsplitters (PBS) are
designed to split light by polarization state rather than
by wavelength or intensity. PBS are often used in
semiconductor or photonics instrumentation to transmit p-polarized light
while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence
with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a
range of configurations including plate, cube, or lateral displacement.
Contact Now
Potassium dihydrogen phosphate KH2PO4 (KDP) is a
transparent dielectric material best known for its nonlinear optical and
electro-optical properties. Because of its nonlinear
optical properties, it has been incorporated into various laser systems
for harmonic generation and optoelectrical switching.
Contact Now
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) crystal is an excellent material for passive Q-switching of Nd:YAG and other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact Now
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. KDP are also excellent
electro-optic (EO) crystals with high EO coefficients, thus popularly
used as EO modulators and Pockels cells for Q-switched
lasers.
Contact Now
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It
has advantages of higher damage threshold (about 1.8 times that of
KTP), high resistivity, high repetition rate, no hygroscopic or
piezoelectric effect.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
Potassium
Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP)
are among the most widely-used commercial NLO materials, characterized
by good UV transmission, high damage threshold, and high birefringence,
though their NLO coefficients are relatively low. They are usually used
for doubling, tripling or quadrupling of a Nd:YAG laser (at constant
temperature).
Contact Now
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now