The most notable benefit of aspheric lenses is their ability to correct for spherical aberration,
an optical effect which causes incident light rays to focus at
different points when forming an image, creating a blur. Spherical
aberration is commonly seen in spherical lenses, such as plano-convex or
double-convex lens shapes, but aspheric lenses focus light to a small
point, creating comparatively no blur and improving image quality.
Contact Now
Optical Lenses are designed to
focus or diverge light and for imaging or alignment in an optical
system. Optical Lenses, which may consist of a single or multiple
elements, have a variety of applications. Lens forms can be divided into
simple lenses (which include plano-convex lens, plano-concave lens,
double-convex lens, double-concave lens, cylinder lens, drum
lens, spherical lens in different shapes), achromatic lenses compound
lens and multiple types.
Contact Now
Optical lenses can be made in many shapes and may be comprised of a
single element or form constituent parts of a multi-element compound
lens system. They are used to focus light and images, produce
magnification, correct optical aberrations and for projection, mainly
controlling the focus or divergence light used in instrumentation,
microscopy and laser applications.
Contact Now
An aspherical lens features a non-spherical but rotationally symmetric
shape with a curvature radius that changes at various points between the
center and the edge. Although producing this type of lens is difficult,
when manufactured properly, it offers greater functionality than a
comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of
curvature across the entire lens. In contrast, aspherical lenses have a
more complicated surface with a gradually changing curvature from center
to edge.
Contact Now
Front surface mirrors are coated with aluminum or dielectrics for
maximum reflection. WISOPTIC provides both kinds of front surface
mirrors: metal coated mirror and dielectric coated mirror.Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). Dielectric laser mirrors are used for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic
mirrors are coated with protected gold, silver, or aluminum.
Contact Now
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contact Now
WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact Now
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers. Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes.
But the dye molecules in the polymer matrix might degradate in a limited time
by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact Now
Readily available stock of periodically poled MgO:LN crystals can be provided
on short timescales to rapidly meet your application needs, providing
the capability to efficiently generate laser light in a wide range of
wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump
laser wavelengths from 976 nm to 2100 nm, allowing generation of light
between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing
continuous wavelength generation in a selection of ranges in the visible
and IR.MgO: PPLN DFG Crystals are available for
Contact Now
Readily available stock of periodically poled LN (PPLN) crystals can be provided
on short lead time, with various specifications of sizes and periods.PPLN SHG crystals are available for pump
laser wavelengths 976-2100 nm, generating light 488-1050nm.PPLN OPO crsytals are available for pump sources 515-1064 nm, generating visible
and IR CW beams.PPLN DFG crystals are available for various combinations of pump sources, generating wavelengths 2-5.5 um.PPLN SFG crystals are available for various combinations of pump
sources, generating wavelengths 500-700 nm.
Contact Now
Wisoptic’s optical mirrors are available for use with light in the UV,
VIS, and IR spectral regions. Optical mirrors with a metallic coating
have high reflectivity over the widest spectral region, whereas mirrors
with a broadband dielectric coating have a narrower spectral range of
operation; the average reflectivity throughout the specified region is
greater than 99%.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact Now
Lithium Niobate (LN) crystal has excellent electro-optic, acousto-optic, piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact Now
Beta-BBO crystal is an important nonlinear optical crystal
with combination of unique optical properties, such as broad transmission and
phase matching ranges, large nonlinear coefficient, high damage
threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth
harmonic generation of Nd:YAG lasers, and the best NLO material for the
fifth harmonic generation at 213 nm.
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
Polarizer is a kind of optical filter
where the light transmission depends strongly on the polarization
state.
Normally, light with linear polarization in a certain direction is
passed, and light polarized in an orthogonal direction is either
absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ
dependence.
That can be understood by considering that linear polarization state as a
linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contact Now
Phase retardation plates, or waveplates, are polarizing
optics used to manipulate the polarization state of the transmitting
light without attenuating, deviating, or displacing the light. The
working principle of the plate is to utilize
the birefringence of certain materials which separates the incident
light beam into two beams along two orthogonal optical axes within
the medium. The phase retardation between the two beams of the incident light contributes to changes in the
polarization state.
Contact Now
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are
particularly well suited for high laser powers and UV wavelengths.
Contact Now
Lithium
Niobate (LiNbO3) is widely used in fiber communication devices as birefringent
crystal and used as electro-optic modulator and Q-switch
for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical
polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing
optics. The transverse modulation is mostly employed for
LiNbO3 crystal.
Contact Now
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect
but are not parallel to each other. The most important parameters of a
prism are the angle and material. Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light
and for determining the identity and structure of materials that emit or
absorb light. An optical prism’s design determines how light interacts with it.
Contact Now