BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Contact Now
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contact Now
The high
damage threshold makes BBO cells more attractive than others in the high
power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in
transverse mode, which makes the cells very compact, and the half-wave
voltage designable. BBO Pockels cells are also suitable for systems with
high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
Basically all Pockels cell drivers are made based on
solid-state electronic technology, using high voltage transistors such
as MOSFETs.
Multiple high voltage transistors may have to be stacked, taking care to
achieve an even distribution of voltage across those.
Instead of using some heavily isolated floating gate drive circuitry for
the different transistors, one may use certain advanced ideas such as
implementing so-called avalanche switch stacks involving avalanche
diodes and/or avalanche bipolar transistors.Device lifetimes can be very long, provided that properly engineered
Contact Now
A Pockels cell driver is a high-voltage regulated power supply,
either pulse or continuous, allowing to control a birefringence of an
electro-optical crystal (KTP, KD*P, BBO, etc.) in order to drive the
polarization direction of the light propagating through the crystal.WISOPTIC has developed and produces a variety of Pockels cell drivers
for different applications: from very simple compact devices for
q-switching to precise and powerful fast models for pulse picking,
cavity damping, regenerative amplifier control, etc.
Contact Now
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low
piezoelectric ringing makes this Pockels cell attractive for the control
of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Contact Now
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable
us to offer our customers complete, plug-and-play RTP Pockels cell
assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact Now
Potassium dideuterium phosphate DKDP (KD * P) crystal has low optical loss, high extinction ratio, and excellent electro-optical performance. DKDP Pockels cells are made by using the longitudinal effect of DKDP crystals. The modulation effect is stable and the pulse width is small.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high
resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It
is possible to use BBO Pockels cells at average power levels of
hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very
low levels of piezo-electric resonances.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common
electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold
comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower
half-wave voltage. The Q-switch is built utilizing thermally compensated
double crystal designs.
Contact Now
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Contact Now
Potassium
Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP)
are among the most widely-used commercial NLO materials, characterized
by good UV transmission, high damage threshold, and high birefringence,
though their NLO coefficients are relatively low. They are usually used
for doubling, tripling or quadrupling of a Nd:YAG laser (at constant
temperature).
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact Now
High temperature phase of α-BBO Crystal (BaB2O4)
is one of the excellent birefringent crystals. It is characterized by
large birefringent coefficient and wide transmission window ranged from
189nm to 3500nm. Due to its high chemical stability and medium hardness,
α-BBO is fabricated easily into many kinds of optical components.The
physical, chemical, thermal and optical properties of α-BBO are similar
to those of β-BBO.
Contact Now
LiNbO3 crystal is a low cost photoelectric material with good mechanical
and physical properties as well as high optical homogeneity. It has
been widely used as frequency doublers for wavelength > 1mm and
optical parametric oscillators (OPOs) pumped at 1064nm as well as
quasi-phase-matched (QPM) devices. With preferable E-O coefficients,
LiNbO3 crystal has become the most commonly used material for Q-switches
and phase modulators, waveguide substrate, and surface acoustic wave
(SAW) wafers, etc.
Contact Now
BBO is an effective NLO crystal for the SHG, THG, or FHG of Nd:YAG lasers, and the first-rate NLO crystal for the FHG at 213nm. Conversion efficiencies of more than 70% for SHG, 60% for THG and 50% for 4HG, and 200mw output at 213 nm (5HG) have been obtained through using Wisoptic's BBO, respectively.BBO is also an efficient crystal for the intracavity SHG of excessive energy Nd:YAG lasers. for the intracavity SHG of an acousto-optic Q-switched Nd:YAG laser, greater than 15 w average power at 532 nm generated via an AR-coated BBO crystal produced by Wisoptic.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now