E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from
390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high
electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP
(D>99% – WISOPTIC) is necessary to reach effective electro-optical
response.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It
has advantages of higher damage threshold (about 1.8 times that of
KTP), high resistivity, high repetition rate, no hygroscopic or
piezoelectric effect.
Contact Now
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low
piezoelectric ringing makes this Pockels cell attractive for the control
of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Contact Now
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high
resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It
is possible to use BBO Pockels cells at average power levels of
hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very
low levels of piezo-electric resonances.
Contact Now
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Contact Now
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact Now
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Contact Now
The high
damage threshold makes BBO cells more attractive than others in the high
power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in
transverse mode, which makes the cells very compact, and the half-wave
voltage designable. BBO Pockels cells are also suitable for systems with
high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact Now
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact Now
LiNbO3 crystal is a low cost photoelectric material with good mechanical
and physical properties as well as high optical homogeneity. It has
been widely used as frequency doublers for wavelength > 1mm and
optical parametric oscillators (OPOs) pumped at 1064nm as well as
quasi-phase-matched (QPM) devices. With preferable E-O coefficients,
LiNbO3 crystal has become the most commonly used material for Q-switches
and phase modulators, waveguide substrate, and surface acoustic wave
(SAW) wafers, etc.
Contact Now
RTP crystal is widely used for Electro-Optic applications whenever low
switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple
types of laser such as Er:YAG laser at 2.94µm with fairly good
efficiency.
Contact Now
KTP Crystal Features• Large Nonlinear Optical (NLO) Coefficients• Wide Phase-matching Acceptance Angle• Broad Temperature and Spectral Bandwidth• High Electro-Optic (E-O) Coefficients
• Nonhygroscopic, Good Chemical and Mechanical Properties
• Relatively High Damage Threshold for E-O modulatorKTP Crystal Applications1. SHG of Nd:Laser - KTP is the most commonly used material for
frequency doubling of Nd:YAG and other Nd-doped lasers, particularly
when the power density is at a low or medium level.
Contact Now
BBO is an effective NLO crystal for the SHG, THG, or FHG of Nd:YAG lasers, and the first-rate NLO crystal for the FHG at 213nm. Conversion efficiencies of more than 70% for SHG, 60% for THG and 50% for 4HG, and 200mw output at 213 nm (5HG) have been obtained through using Wisoptic's BBO, respectively.BBO is also an efficient crystal for the intracavity SHG of excessive energy Nd:YAG lasers. for the intracavity SHG of an acousto-optic Q-switched Nd:YAG laser, greater than 15 w average power at 532 nm generated via an AR-coated BBO crystal produced by Wisoptic.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely
used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power
Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact Now
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact Now
Lithium Niobate (LN) crystal has excellent electro-optic, acousto-optic, piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact Now