Aspheric Lenses-manufacture,factory,supplier from China

(Total 24 Products for Aspheric Lenses)
The most notable benefit of aspheric lenses is their ability to correct for spherical aberration, an optical effect which causes incident light rays to focus at different points when forming an image, creating a blur. Spherical aberration is commonly seen in spherical lenses, such as plano-convex or double-convex lens shapes, but aspheric lenses focus light to a small point, creating comparatively no blur and improving image quality.
Contact Now
WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type  Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact Now
Optical Lenses are designed to focus or diverge light and for imaging or alignment in an optical system. Optical Lenses, which may consist of a single or multiple elements, have a variety of applications. Lens forms can be divided into simple lenses (which include plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, cylinder lens, drum lens, spherical lens in different shapes), achromatic lenses compound lens and multiple types.
Contact Now
An aspherical lens features a non-spherical but rotationally symmetric shape with a curvature radius that changes at various points between the center and the edge. Although producing this type of lens is difficult, when manufactured properly, it offers greater functionality than a comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of curvature across the entire lens. In contrast, aspherical lenses have a more complicated surface with a gradually changing curvature from center to edge.
Contact Now
Optical lenses can be made in many shapes and may be comprised of a single element or form constituent parts of a multi-element compound lens system. They are used to focus light and images, produce magnification, correct optical aberrations and for projection, mainly controlling the focus or divergence light used in instrumentation, microscopy and laser applications.
Contact Now
Optical filter is usually a component with a wavelength-dependent transmittance or reflectance. It's used to selectively transmit or reject a wavelength or range of wavelengths.  Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters. The general applications of optical filters include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths.
Contact Now
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate.  WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
Polarization is an important characteristic of light. Polarizers are key optical elements for controlling your polarization, transmitting a desired polarization state while reflecting, absorbing or deviating the rest. There is a wide variety of polarizer designs, each with its own advantages and disadvantages.
Contact Now
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contact Now
There are four main types of prisms based on the function: dispersion prism, deflection or reflection prism, rotating prism and offset prism.  Deflection, offset and rotating prisms are commonly used in imaging applications; diffusion prisms are designed for dispersive light sources and are not suitable for any application that requires high quality images.WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
Front surface mirrors are coated with aluminum or dielectrics for maximum reflection. WISOPTIC provides both kinds of front surface mirrors: metal coated mirror and dielectric coated mirror.Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7).  Dielectric laser mirrors are used for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum.
Contact Now
Optical beamsplitters play a vital role in many laser-based measurement and positioning systems. Although the operation of a typical beamsplitter is conceptually simple, its performance characteristics can dramatically affect the accuracy and repeatability of the overall system. Consequently, understanding the variables that distinguish beamsplitter performance is an important step in comparing and specifying components.
Contact Now
Wisoptic’s optical mirrors are available for use with light in the UV, VIS, and IR spectral regions. Optical mirrors with a metallic coating have high reflectivity over the widest spectral region, whereas mirrors with a broadband dielectric coating have a narrower spectral range of operation; the average reflectivity throughout the specified region is greater than 99%.
Contact Now
Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contact Now
Potassium dihydrogen phosphate KH2PO4 (KDP) is a transparent dielectric material best known for its nonlinear optical and electro-optical properties. Because of its nonlinear optical properties, it has been incorporated into various laser systems for harmonic generation and optoelectrical switching.
Contact Now
Pure LiNbO3 (LN) is a good candidate for various optical devices, but has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent compositions) is one of the possible solutions to deal with this problem. MgO doping has played an important role in LN and shown an increased threshold laser beam strength by 100 times. An interesting point is that every physical property of MgO:LN (e.g.
Contact Now
KTP (KTiOPO4 ) is one of the most commonly used nonlinear optical materials which offers a range of unique features: high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact Now
    Potassium dideuterium phosphate DKDP (KD * P) crystal has low optical loss, high extinction ratio, and excellent electro-optical performance. DKDP Pockels cells are made by using the longitudinal effect of DKDP crystals. The modulation effect is stable and the pulse width is small.
Contact Now
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect but are not parallel to each other. The most important parameters of a prism are the angle and material.  Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light and for determining the identity and structure of materials that emit or absorb light. An optical prism’s design determines how light interacts with it.
Contact Now
A right angle prism is an optical prism designed to deviate light by 90° or 180°, depending on the orientation of the prism and the face through which light enters. The joining edges and faces are perpendicular to the base faces, and all joining faces are rectangular. They are often  preferable to plane mirrors, because they are easier to mount and align.
Contact Now
Thin film polarizers are based on interference within a dielectric optical thin-film coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say to change un-polarized beam into linear polarized beam.
Contact Now
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling or quadrupling of a Nd:YAG laser (at constant temperature).
Contact Now
Relate News
2-5 μm mid-infrared laser crystals have important applications in directional infrared countermeasures, anti-terrorism, biomedicine, environmental monitoring, optical communications, strong field physics, laser fusion, and mid-to-far infrared (nonlinear frequency conversion) basic light sources, etc. With the related development of the pump source technology of semiconductor laser (laser diode, LD), solid-state laser and fiber laser (including resonant pump), mid-infrared crystal has become one of the four main laser crystals developed currently.
03 Experimental results and analysisBy optimizing the cavity length parameters of Nd:YVO4 (www.wisoptic.com) laser under high-power pump injection, a 1064 nm high peak power narrow pulse laser output with an average power of 26 W, a repetition frequency of 20 kHz, and a single pulse width of 5 ns was obtained when the 888 nm pump light power was 65 W; after the 1064 nm fundamental frequency infrared light was doubled by the LBO crystal, a 532 nm laser with a maximum power of 16 W was finally obtained, and the infrared to green light conversion efficiency reached 61.5%.
3.3 Laser pretreatment of dielectric film with large diameter Laser pretreatment technology is the last process before the supply of large-diameter components with dielectric film in NIF devices in the United States. LLNL provides their laser pretreatment device and specifications to each of their supplier of thin film components.
3.2 Laser Pretreatment TechnologyLaser pretreatment is a technology that uses sub-threshold laser energy flow to process components before they are practically used. It can effectively improve the ability of some optical components to resist laser damage. The main function of laser pretreatment is to remove defects or reduce thermodynamic response under laser irradiation.
After more than one year’s research work, WISOPTIC has successfully developed two types of dye laser cells – 585nm and 650nm.With advanced technique of coating and optical system design, dye laser headpiece has been developed and will be in mass production soon.Dye laser headpiece 585nm is used mainly to treat facial telangiectasia, and dye laser headpiece 650nm for removal of green tattoo, etc.Dye laser headpiece made from WISOPTIC has higher conversion efficiency than that of any competing product.
2.2 Theoretical inversion cognition of precursor characteristics through damage morphologyThe typical damage morphology of multilayer dielectric films with picosecond pulse in the fundamental frequency band is high-density and small-scale. In order to understand the destruction process, we designed a multi-layer dielectric film system with high fundamental frequency and high reflection, and used a 1064 nm 30 ps laser to conduct a destruction experiment. Figure 9 shows a typical damage morphology.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
3.4 Laser pretreatment of DKDP component The laser-damaged precursor of DKDP crystals (provided by WISOPTIC) is in the material body, so it is different from the removal of surface nodule defects in dielectric films. Laser pretreatment cannot remove the precursors in the body, but can only reduce the thermodynamic response of the precursors under laser radiation by improving their absorption intensity. There are still different opinions on this mechanism.
WISOPTIC is using its newly-set coating machine to do in-house vacuum coatings on crystals and optical components.With our own coating machine and technique, we can provide customers products with excellent quality, e.g. higher surface quality, higher transmittance, and higher LIDT etc.Sorts of dielectric coatings (e.g. AR, HR, PR) are available for crystals (KDP/DKDP, KTP, RTP, BBO, LBO, LN, Nd:YAG, etc) and optical components (laser windows, mirrors, PBS, etc).
x

Submitted successfully

We will contact you as soon as possible

Close