Readily available stock of periodically poled MgO:LN crystals can be provided
on short timescales to rapidly meet your application needs, providing
the capability to efficiently generate laser light in a wide range of
wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump
laser wavelengths from 976 nm to 2100 nm, allowing generation of light
between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing
continuous wavelength generation in a selection of ranges in the visible
and IR.MgO: PPLN DFG Crystals are available for
Contact Now
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact Now
Thin film polarizers are based on interference within a dielectric optical thin-film
coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say
to change un-polarized beam into linear polarized beam.
Contact Now
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect
but are not parallel to each other. The most important parameters of a
prism are the angle and material. Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light
and for determining the identity and structure of materials that emit or
absorb light. An optical prism’s design determines how light interacts with it.
Contact Now
LiNbO3 crystal is a low cost photoelectric material with good mechanical
and physical properties as well as high optical homogeneity. It has
been widely used as frequency doublers for wavelength > 1mm and
optical parametric oscillators (OPOs) pumped at 1064nm as well as
quasi-phase-matched (QPM) devices. With preferable E-O coefficients,
LiNbO3 crystal has become the most commonly used material for Q-switches
and phase modulators, waveguide substrate, and surface acoustic wave
(SAW) wafers, etc.
Contact Now
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate
materials, e.g. UVFS
and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm.
Also we offer uncoated rectangular windows with aperture from 15 x 20 to
50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact Now
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact Now
Diffusion bonded crystal consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact Now
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contact Now
The periodic polarized KTP (PPKTP) is a novel nonlinear optical material that can be customized to achieve all of the nonlinear applications required in the entire KTP crystal transmission band, without the phase matching limitations of conventional KTP. Moreover, the effective nonlinear coefficient of PPKTP is about 3 times higher than that of conventional KTP. In the nonlinear application of conventional KTP, the crystal must have a single domain structure, but PPKTP crystal has an artificially induced periodic domain structure.
Contact Now
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely favorable for laser operations. Nd:YAG
crystals are used in all types of solid-state lasers
systems-frequency-doubled continuous wave, high-energy Q-switched, and
so on.
Contact Now
Main SpecificationsDimensionsAperture2×2 ~ 14×14 mm2Length0.1 - 12 mmOrientation[100] or [111] (±1°)Doping Concentration0.5 ~ 3.0 mol%Initial Absorption Coefficient0.5 ~ 6.0 cm-1 @ 1064 nmInitial Transmission5% ~ 95% Surface Flatness< λ/8 @ 633 nmEnd Surface Parallelism< 30”Chamfer≤ 0.1 mm × 45°Surface Quality20-10 [s-d] (MIL-PRF-13830B)CoatingAR (R<0.2% @1064nm) or according to customer’s requestLIDT≥ 500 MW/cm2The pulse width of Cr4+:YAG passively Q-switched lasers could be as short as 5 ns for diode pumped Nd:YAG lasers and the repetition could be as high a
Contact Now
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is one of the best commercially available material for diode-pumped solid-state lasers, especially for lasers with low or middle power density. For example, Nd:YVO4 is a better choice than Nd:YAG for generating low-power beams in hand-held pointers or other compact lasers. In these applications, Nd:YOV4 has some advantages over Nd:YAG, e.g.
Contact Now
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Contact Now
Diffusion
Bonding Crystal consists of two, three or more parts
with different types. They are often used to decrease
thermal lens effect, that is conducive to the stability of lasers and
high-power laser operation.The Crystals being bonded could be a laser crystal doped
with laser-active ions, and its counterparts without dopants (e.g. YAG +
Nd :YAG).
Contact Now
Cr:YAG or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) is an excellent and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact Now
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical
emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output.
Contact Now
One of the most important drawbacks of popular LiNbO3 crystal is its
susceptibility to photorefractive damage (optically induced change of
refractive index, usually under exposure with blue or green CW light).
The usual way to eliminate this effect is to keep LN crystals at
elevated temperatures (400K or more). Another way to prevent
photorefractive damage is MgO-doping (usually at levels of around 5 mol%
for congruent LN).
Contact Now