1980nm-manufacture,factory,supplier from China

(Total 24 Products for 1980nm)
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Contact Now
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Contact Now
BBO features good optical transparency from around 200nm to over 2µm, offers a high resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It is possible to use BBO Pockels cells at average power levels of hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very low levels of piezo-electric resonances.
Contact Now
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. KDP are also excellent electro-optic (EO) crystals with high EO coefficients, thus popularly used as EO modulators and Pockels cells for Q-switched lasers.
Contact Now
Gray Track Resistant (GTR) KTP crystals developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band. So it's very suitable for high power density applications, where regular flux-grown KTP crystals will suffer from gray track damage.GTR-KTP crystal has gray track resistance sufficiently greater than typical flux-grown KTP.
Contact Now
Optical filters are used to selectively transmit or reject a wavelength or range of wavelengths. Their applications include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Optical filters are widely used in light system of life science, imaging, industrial, or defense industries. For example, Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths. Notch filters reject a portion of the spectrum, while transmitting all other wavelengths.
Contact Now
Optical filter is usually a component with a wavelength-dependent transmittance or reflectance. It's used to selectively transmit or reject a wavelength or range of wavelengths.  Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters. The general applications of optical filters include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths.
Contact Now
WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type  Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact Now
An aspherical lens features a non-spherical but rotationally symmetric shape with a curvature radius that changes at various points between the center and the edge. Although producing this type of lens is difficult, when manufactured properly, it offers greater functionality than a comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of curvature across the entire lens. In contrast, aspherical lenses have a more complicated surface with a gradually changing curvature from center to edge.
Contact Now
Optical Lenses are designed to focus or diverge light and for imaging or alignment in an optical system. Optical Lenses, which may consist of a single or multiple elements, have a variety of applications. Lens forms can be divided into simple lenses (which include plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, cylinder lens, drum lens, spherical lens in different shapes), achromatic lenses compound lens and multiple types.
Contact Now
The most notable benefit of aspheric lenses is their ability to correct for spherical aberration, an optical effect which causes incident light rays to focus at different points when forming an image, creating a blur. Spherical aberration is commonly seen in spherical lenses, such as plano-convex or double-convex lens shapes, but aspheric lenses focus light to a small point, creating comparatively no blur and improving image quality.
Contact Now
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Contact Now
Optical lenses can be made in many shapes and may be comprised of a single element or form constituent parts of a multi-element compound lens system. They are used to focus light and images, produce magnification, correct optical aberrations and for projection, mainly controlling the focus or divergence light used in instrumentation, microscopy and laser applications.
Contact Now
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate.  WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect but are not parallel to each other. The most important parameters of a prism are the angle and material.  Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light and for determining the identity and structure of materials that emit or absorb light. An optical prism’s design determines how light interacts with it.
Contact Now
Polarizing Beamsplitters (PBS) splits incident unpolarized light into two perpendicular linearly polarized light. Among them, p-polarized light passes through completely, while s-polarized light is reflected at 45 deg which makes the emitting direction of s-light vertical to p-light. Additionally, beamsplitters can be used in reverse to combine two different beams into a single one. Beamsplitters are often classified according to their construction:cube or plate.Cube PBS are fabricated using two typically right angle prisms.
Contact Now
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Contact Now
Right angle prisms are generally used to bend image paths or redirect light at 90°. This produces a left handed image and depending on the orientation of the prism, the image may be inverted or reverted.
Contact Now
There are four main types of prisms based on the function: dispersion prism, deflection or reflection prism, rotating prism and offset prism.  Deflection, offset and rotating prisms are commonly used in imaging applications; diffusion prisms are designed for dispersive light sources and are not suitable for any application that requires high quality images.WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
A right angle prism is an optical prism designed to deviate light by 90° or 180°, depending on the orientation of the prism and the face through which light enters. The joining edges and faces are perpendicular to the base faces, and all joining faces are rectangular. They are often  preferable to plane mirrors, because they are easier to mount and align.
Contact Now
Wisoptic’s optical mirrors are available for use with light in the UV, VIS, and IR spectral regions. Optical mirrors with a metallic coating have high reflectivity over the widest spectral region, whereas mirrors with a broadband dielectric coating have a narrower spectral range of operation; the average reflectivity throughout the specified region is greater than 99%.
Contact Now
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
High temperature phase of α-BBO Crystal (BaB2O4) is one of the excellent birefringent crystals. It is characterized by large birefringent coefficient and wide transmission window ranged from 189nm to 3500nm. Due to its high chemical stability and medium hardness, α-BBO is fabricated easily into many kinds of optical components.The physical, chemical, thermal and optical properties of α-BBO are similar to those of β-BBO.
Contact Now
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact Now
Relate News
Since defects induce laser damage, and defects are randomly distributed in optical components, the detection and evaluation of laser damage performance of optical components has become another important research content. The standard for laser damage threshold testing was established in the 1990s and has been continuously improved with the development of laser technology and optical materials.
3. Experimental EquipmentThe overall device diagram of the frequency doubling experiment is shown in Figure 3(a). The 1064nm continuous light passes through a half-wave plate and is directly focused into the CPPLN crystal by a lens. The generated frequency doubling light passes through a 532nm transparent filter and is received and detected by a power meter. The self-built LD-pumped Nd:YVO4 continuous laser used in the experiment can reach a maximum output power of 22.53W.
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
Introduction 532nm solid-state lasers are widely used in industry and medicine. In the field of scientific research, continuous, high-stability 532nm green light and kilohertz, high-energy nanosecond 532nm laser are the most ideal pump source solutions for titanium sapphire oscillators and amplifiers respectively. The basic route is to use an 808nm/880nm semiconductor laser as the pump source, generate a 1064nm laser in an Nd:YVO4 or Nd:YAG crystal, and then perform frequency doubling (SHG) through a frequency doubling crystal to generate a continuous or pulsed 532nm laser.
Introduction High-power all-solid-state deep ultraviolet (DUV) lasers have many important applications in scientific research, medical diagnosis, and industrial manufacturing, such as Raman spectroscopy, photobioimaging, integrated circuit etching, and precision micromachining, due to their compact structure, high single-photon energy, and good long-term stability.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
MEASUREMENT TECHNIQUEThe measurement technique consists primarily of a measurement of the variation of the angle of deviation with temperature. The crystals to be measured were 60-60-60° prisms approximately 15 mm on a side. They were attached to a temperature-controlled mount in a vacuum chamber. The temperature could be varied by varying the temperature of a liquid bath above the mount. Temperature was measured by thermocouples attached above and below the crystal. The crystal temperature was assumed to be the average of the two temperatures.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
The Asia Photonics Expo (APE) is a holistic photonics platform for branding and business connection, focusing on the latest cutting-edge innovative technologies and the emerging application markets in Asia, aiming to promote the in-depth communication and business collaboration between photonics upstream and downstream professionals.WISOPTIC will show its hot products supplying to the  whole world (EU, USA, UK, Asia, etc.) and looking forward to meeting new friends as well as its "old" business partners all over the world.
1.3 Doping of Lithium Tantalate CrystalDifferent fields have different requirements for the properties of lithium tantalate crystals. When being used to prepare high-density and large-capacity holographic information storage devices, LiTaO3 crystals need to have excellent photorefractive properties. Due to the particularity of the crystal structure of LiTaO3, its physical properties can be adjusted through doping, for example, the widely used photorefractive doping.
x

Submitted successfully

We will contact you as soon as possible

Close