1940nm-manufacture,factory,supplier from China

(Total 24 Products for 1940nm)
Yb:YAG's advantage is a wide pump band and an excellent emission cross section. It is ideal for diode pumping. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output. High efficiency means a relatively small dimension Yb:YAG laser crystal will produce high power output. Based on the YAG host crystal, Yb:YAG can be quickly integrated into the laser design process.
Contact Now
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact Now
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact Now
Compared to more commonly used KTP crystal, KTA crystal has larger non-linear optical and electro-optical coefficients. KTA has the added benefit of significantly reduced absorption in the 2 to 5 μm region.  It has found more and more applications in second harmonic generation (SHG), sum and difference frequency generation (SFG)/(DFG), optical parametric oscillation/ amplification (OPO/OPA), and electro-optical Q-switching. WISOPTIC do in-house growing and processing KTA crystal with high optical quality and various options of dimensional and coating specifications.
Contact Now
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact Now
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate.  WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact Now
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact Now
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact Now
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby, Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity and therefore enhanced laser power. Surfaces can be sealed and coated with a solarization-resistant glaze to give high bulk reflectivity.
Contact Now
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact Now
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contact Now
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Contact Now
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contact Now
Dye laser headpiece made from WISOPTIC has very high conversion efficiency: 65%~75% for 532/585nm, 45%~55% for 532/650nm.
Contact Now
Alumina Ceramic Reflectors are designed primarily for use in pumping chambers for many diverse laser systems, e.g. YAG lasers.
Contact Now
Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contact Now
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate materials, e.g.  UVFS and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm. Also we offer uncoated rectangular windows with aperture from 15 x 20 to 50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact Now
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact Now
BBO is an effective NLO crystal for the SHG, THG, or FHG of Nd:YAG lasers, and the first-rate NLO crystal for the FHG at 213nm. Conversion efficiencies of more than 70% for SHG, 60% for THG and 50% for 4HG, and 200mw output at 213 nm (5HG) have been obtained through using Wisoptic's BBO, respectively.BBO is also an efficient crystal for the intracavity SHG of excessive energy Nd:YAG lasers. for the intracavity SHG of an acousto-optic Q-switched Nd:YAG laser, greater than 15 w average power at 532 nm generated via an AR-coated BBO crystal produced by Wisoptic.
Contact Now
Polarizing Beamsplitters (PBS) are designed to split light by polarization state rather than by wavelength or intensity. PBS are often used in semiconductor or photonics instrumentation to transmit p-polarized light while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a range of configurations including plate, cube, or lateral displacement.
Contact Now
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm, which attach to Q-switched Nd:YAG lasers. For these wavelengths to be produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to produce the 532 nm wavelength, which is then converted by the dye handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact Now
RTP crystal is widely used for Electro-Optic applications whenever low switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple types of laser such as Er:YAG laser at 2.94µm with fairly good efficiency.
Contact Now
Relate News
Introduction High-power all-solid-state deep ultraviolet (DUV) lasers have many important applications in scientific research, medical diagnosis, and industrial manufacturing, such as Raman spectroscopy, photobioimaging, integrated circuit etching, and precision micromachining, due to their compact structure, high single-photon energy, and good long-term stability.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
Study on the efficiency and temperature robustness of chirped PPLN crystal in 1064nm frequency doubling experiment - 06  4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOWhen the input 1064nm light is 22.53W, the curves of the frequency-doubled optical power generated by CPPLN (www.wisoptic.com) and LBO (www.wisoptic.com) with temperature are shown in Figure 5(a) and Figure 5(b). The half-maximum full width of the frequency-doubled optical power of CPPLN with respect to temperature is 8.40℃, ranging from 24.19℃ to 32.59℃.
1. 2   ~ 2.3 μm laser crystals doped with Tm3+ Compared with the 2 μm band (3F4 → 3H6) of Tm3+, the 2.3 μm laser operation based on the 3H4 → 3H5 transition of the Tm3+ doped laser medium has the following advantages: (1) ~790 nm LD is directly pumped to the upper energy level of the laser. Tm3+ has a strong absorption around 790 nm (directly corresponding to the 3H4 → 3H6 transition), which can match the emission wavelength of the current mature commercial AlGaAs LD, so as to realize high-performance LD pumping all-solid-state high-efficiency 2.3 μm laser operation.
3. Experimental EquipmentThe overall device diagram of the frequency doubling experiment is shown in Figure 3(a). The 1064nm continuous light passes through a half-wave plate and is directly focused into the CPPLN crystal by a lens. The generated frequency doubling light passes through a 532nm transparent filter and is received and detected by a power meter. The self-built LD-pumped Nd:YVO4 continuous laser used in the experiment can reach a maximum output power of 22.53W.
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
It’s well known that the DKDP crystal is very easy to be damaged by humidity, especially in  environment with high temperature. So ordinary DKDP Pockels cells can not be used in high temperature and high humidity environment, or their service life is very short. After more than two years of continuous technical research, WISOPTIC has successfully developed DKDP Pockels cells that can be used in lasers working in high temperature and high humidity environments.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
1.3 Doping of Lithium Tantalate CrystalDifferent fields have different requirements for the properties of lithium tantalate crystals. When being used to prepare high-density and large-capacity holographic information storage devices, LiTaO3 crystals need to have excellent photorefractive properties. Due to the particularity of the crystal structure of LiTaO3, its physical properties can be adjusted through doping, for example, the widely used photorefractive doping.
MEASUREMENT TECHNIQUEThe measurement technique consists primarily of a measurement of the variation of the angle of deviation with temperature. The crystals to be measured were 60-60-60° prisms approximately 15 mm on a side. They were attached to a temperature-controlled mount in a vacuum chamber. The temperature could be varied by varying the temperature of a liquid bath above the mount. Temperature was measured by thermocouples attached above and below the crystal. The crystal temperature was assumed to be the average of the two temperatures.
x

Submitted successfully

We will contact you as soon as possible

Close